Imidyl Radicals. 3^{1})

Stereoselectivity of Radical Additions of \boldsymbol{N}-Haloimides to Cyclic Alkenes

André Kirsch
Freiburg, Institut für Organische Chemie und Biochemie der Universität
\title{ Ulrich Lüning * and Oliver Krüger }
Kiel, Institut für Organische Chemie der Christian-Albrechts-Universität
Dedicated to Prof. Dr. C. Rüchardt on the Occasion of his 70 th Birthday

Received April 12th, 1999, respectively July 29 th, 1999
Keywords: Alkenes, Halogenes, Radicals, Imidyl radicals, Stereoselectivity

Abstract

The addition of N -haloimides ($\mathbf{1 - 5)}$ to alkenes 9 via imidyl radicals 6-8 introduces a halogen atom and an imidyl moiety to vicinal C -atoms of a carbon chain. With cyclic alkenes, the trans/cis-stereoselectivity depends on the nature of the imidyl unit, on the halogen atom, and on the

alkene and varied between $58: 42$ and $>95:<5$. Temperature dependend studies showed higher trans/cis-selectivities at elevated temperatures, which may be caused by different conformations of the adduct radicals $\mathbf{1 0 - 1 2}$, each of them exhibiting a different stereoselectivity.
N-Haloimides ($\mathbf{1}-\mathbf{5}$) are used in two types of radical chain reactions: (i) the selective Ziegler bromination of allylic and benzylic positions [1], which are bromine atom chain reactions [2] and (ii) imidyl radical [3, 4] chain reactions like substitutions and especially additions to double bonds [5, 6, 7] (see scheme 1).

In this work, the addition to cyclic alkenes 9 has been investigated. Such additions may give a variety of products: regio- and stereoisomers. The regioselectivity of the radical addition of N-haloimides has already been studied [7]. This selectivity is determined during the first step of the radical chain when an imidyl radical 6-

Scheme 1. Radical addition of N-haloimides $\mathbf{1 - 5}$ to alkenes 9 to form addition products 13-17

[^0]$\mathbf{8}$ adds to the alkene $\mathbf{9}$ forming an adduct radical $\mathbf{1 0}$ 12. But reversible addition may lead to changes in the regioselectivity [7].

In the second step of the radical chain, the halogen atom is transfered from an N -haloimide $\mathbf{1 - 5}$ to the adduct radical 10-12. In this transfer reaction, a second stereocenter may be established. But in contrast to the addition of the imidyl moiety to the alkene the halogen atom transfer to the adduct radicals $\mathbf{1 0 - 1 2}$ is not reversible because the radical character is lost and the nonradical products $\mathbf{1 3 - 1 7}$ are formed. With cyclic alkenes 9, two possible orientations of this halogen atom in respect to the imidyl moiety are possible: cis and trans (see scheme 2). Both elements of an N -haloimide, the imidyl moiety and the halogen atom may influence the stereoselectivity.

Scheme 2 The addition of imidyl radicals $\mathbf{1 - 5}$ to cycloalkenes $\mathbf{9 a}-\mathbf{g}$ forms adduct radicals 18. Halogen transfer by syn- or anti-attack gives the stereoisomers cis-9a-g and trans-9a-g.

Therefore, we have investigated the stereoselectivity of the addition of five different N-haloimides to cycloalkenes: N-bromophthalimide (1), N-chlorophthalimide (2), N-bromo-3,3-dimethylglutarimide (3), N-chloro-3,3-dimethylglutarimide (4), and N -bromonaphthalene-

1,8-dicarboximide (5). Some of the addition products 13-17 are literature-known, the addition of N-chloro-3,3-dimethylglutarimide (4) and N -bromonaphthalene-1,8-dicarboximide (5) to a variety of alkenes 9 yielding the addition products $\mathbf{1 6}$ and $\mathbf{1 7}$ was not studied yet. Therefore, not only the reaction of 4 and 5 with cyclic alkenes $9 \mathbf{a}-\mathbf{h}$ has been investigated but the addition to standard alkenes like 3,3-dimethylbutene (9i) and 1octene ($\mathbf{9} \mathbf{j}$) has been carried out for comparison as well. As with other N-haloimides [7] the addition to 3,3dimethylbutene ($\mathbf{9 i}$) only gives the α-regioisomers. But the addition of $\mathbf{4}$ and 5 to 1 -octene $(\mathbf{9 j})$ gave two regioisomers as did the additions of $\mathbf{1 - 3}$. As seen for N-bro-mo- (1) and N-chlorophthalimide (2), also the addition of the N-chloroglutarimide 4 was more selective than the addition of the bromo compound 3 . A small regioselectivity was also found for the N-bromonaphthalene-1,8-dicarboximide (5):
α / β-ratios for N-bromoimides: 1: $80: 20, \mathbf{3 :} 60: 40,5$: 67 : 33.
α / β-ratios for N-chloroimides: 2: $93: 7,4: 90: 10$.

α-isomer

β-isomer

All new addition products $\mathbf{1 3} \mathbf{- 1 7}$ have been fully characterized. In cases where microanalyses failed high resolution mass spectra (HR-MS) were recorded to prove the composition, and the purity of the compounds was checked by GC if not stated otherwise in the experimental section.

To study the stereoselectivity of the radical addition, five N-haloimides $\mathbf{1 - 5}$ have been treated with seven cyclic alkenes $9 \mathbf{a}-\mathbf{g}$ and with the bicyclic norbornene (9h). Table 1 summarizes the trans/cis-ratios for the addition to the cyclic alkenes $9 \mathbf{a}-\mathbf{g}$, Table 2 lists the exol endo-isomers of the additions to norbornene. The stereoselectivities were directly determined from the reaction mixtures by GC or ${ }^{1} \mathrm{H}$ NMR. During isolation, a change of the concentration of one isomer in respect to

Table 1 trans/cis-Ratios for the addition of N-haloimides $\mathbf{1}-\mathbf{5}$ to cyclic alkenes $\mathbf{9 a}-\mathbf{g}$ at $40^{\circ} \mathrm{C}$, determined by GC or ${ }^{1} \mathrm{H}$ NMR. If only one isomer could be detected, >95:<5 is listed.

addition to	1 trans/cis	2 trans/cis	3 trans/cis	4 trans/cis	5 trans/cis
9a	13a: 92:8 ${ }^{\text {b }}$)	14a: >95:<5	15a: >95 : < ${ }^{\text {b }}$)		
9 b	13b: 92: ${ }^{\text {b }}$)	14b: 97:3 ${ }^{\text {c }}$)	15b: >95:<5 ${ }^{\text {b }}$)	16b: 94:6	17b: >95:<5
9c	13c: >95:<5	14c: >95:<5			
9d	13d: 97:3	14d: 74:26		16d: >95:<5	
9e	13e: $\left.87: 13^{\text {a }}\right)^{\text {b }}$)	14e: 58:42 ${ }^{\text {a }}$)			
9 f	13f: $\left.92: 8^{\text {a }}\right)^{\text {b }}$)	14f: 64:36 ${ }^{\text {a }}$ ()			
9 g	13g: 87:13 ${ }^{\text {c }}$)				

${ }^{\text {a) }}$ Only α-isomer. ${ }^{\text {b }}$) $\operatorname{Ref}[6] .{ }^{\text {c }}$) $\operatorname{Ref}[7]$.

Table 2 Stereoisomer distribution of the products 13h, 14h and $\mathbf{1 6 h}$ obtained by the addition of N -haloimides $\mathbf{1 , 2}$ and $\mathbf{4}$ to norbornene ($\mathbf{9 h}$)

imidyl	halogen	$\mathbf{1 3 h}$	$\mathbf{1 4 h}$	$\mathbf{1 6 h}$
exo	exo	59	55	40
exo	endo	18	22	30
endo	exo	24	23	30
endo	endo	<5	<5	<5

the other(s) was observed in some cases. This explains the different isomer ratios in Table 1-3 and in the experimental.

As Table 1 shows, in all additions the trans-products are favored. The selectivities vary from $58: 42$ to >95 : <5 and depend on (i) the nature of the alkene 9 , (ii) the imidyl moiety, and (iii) on the halogen atom.

Since the stereochemistry of the second stereocenter is established during the abstraction of the halogen atom by the adduct radical $\mathbf{1 0} \mathbf{- 1 2}$, the transition states for this reaction step must be inspected to understand the trans-selectivity. In the adduct radical 10-12, the first stereocenter is already formed by the addition of the imidyl radical $6-\mathbf{8}$ to the alkene 9 . This results in a differentiation of the two sides of the cyclus, and an attack of an N -haloimide will be slowed down if it occurs as a syn-attack rather than an anti-attack.

The reactions of the N -halophthalimides $\mathbf{1}$ and $\mathbf{2}$ with seven- or six-membered cyclic alkenes, respectively, allow to study the influence of the substituents R^{1} to R^{4} on the stereoselectivity and show the dependence of the trans/cis-ratios on the nature of the halogen atom, too. Eight additions have also been investigated at different temperatures: (i) the reaction of $\mathbf{1}$ with four alkenes ($\mathbf{9 a}$, $\mathbf{b}, \mathbf{d}, \mathbf{f}$), and (ii) the reaction of all five N-haloimides $\mathbf{1}$ 5 with cyclohexene (9b) (Table 3).

A decrease of the temperature has two effects on the radical additions: (i) In general, the yields drop, which suggests that competing reactions like hydrogen abstraction or chain terminations are less influenced by decreasing temperature. Reduced adducts resulting from hydrogen transfer to the adduct radicals $\mathbf{1 0} \mathbf{- 1 2}$ have been isolated as by-products. (ii) The stereoselectivities decrease with decreasing temperature. This is not in accord with the reactivity-selectivity principle. But the effect can be explained by two competing reactions: As stated above, the conformations of the adduct radicals 10-12 are important for the observed stereoselectivities (see scheme 3). Therefore, calculations have been carried out on the adduct radicals with cyclohexene $9 \mathbf{9 b}$. The conformations of 2-imidyl substituted cyclohexyl radicals and related ones have been calculated with different methods (see Table 4).

Scheme 3. The trans/cis-ratios of the products 13a-g-17a\mathbf{g} are determined by the syn- or anti-attack of the N -haloimides $\mathbf{1 - 5}$ on the adduct radicals $\mathbf{1 9}$ which exist as two conformers in equilibrium, eq-19 and ax-19.

In all cases calculated, the equatorial orientation of a substituent in 2-position of a cyclohexyl radical is energetically favored. But in a number of calculations the energy difference is less than $2 \mathrm{kcal} / \mathrm{mol}$, arguing for a

Table 3 Temperature dependence of the trans/cis-product ratios obtained from the addition of N-haloimides $\mathbf{1}-\mathbf{5}$ to cycloalkenes 9

addition of :$T\left({ }^{\circ} \mathrm{C}\right)$		1		2		3		4		5	
		trans/cis	yield (\%) ${ }^{\mathrm{a}}$)	trans/cis	yield $\left.(\%)^{\mathrm{a}}\right)$	trans/cis	yield (\%) ${ }^{\text {a }}$	trans/cis	yield $\left.(\%)^{a}\right)$	trans/cis	yield (\%) ${ }^{\mathrm{a}}$)
9a	40	92:8	33								
	0	94:6	23								
	-78	87: 13	12								
9b	40	92:8	29	95:5	27	>95:5	24	94: 6	41	>95: 5	15
	0	89:11	26	-	0	>95:5	29	$74: 26$	14	>95:5	14
	-78	77 : 23	20			>95:5	32	-	0	-	0
9d	40	97:3	27								
	0	87: 13	8								
	-78	$74: 26$	3								
9 f	40	92:8	25								
	0	92:8	17								
	-78	94:6	11								

[^1]Table 4 Calculated energy differences (in $\mathrm{kcal} / \mathrm{mol}$) between the axial and equatorial conformers of 2-substituted cyclohexyl radicals 19, and axiallequatorial ratios ax-19 : eq-19 calculated for $293 K$ (in parentheses).

method	substituent R				
	succinimidyl	phthalimidyl	glutarimidyl ${ }^{\text {a }}$)	naphthalene- 1.8-dicarboximidyl	phenyl-
PCM	$\begin{aligned} & 4.68 \\ & (0: 100) \end{aligned}$	$\begin{aligned} & 5.13 \\ & (0: 100) \end{aligned}$	$\begin{aligned} & 6.14 \\ & (0: 100) \end{aligned}$	$\begin{aligned} & 5.21 \\ & (0: 100) \end{aligned}$	$\begin{aligned} & 2.71 \\ & (1: 99) \end{aligned}$
AM1	$\begin{aligned} & 1.88 \\ & (4: 96) \end{aligned}$	$\begin{aligned} & 1.87 \\ & (4: 96) \end{aligned}$	$\begin{aligned} & 2.78 \\ & (1: 99) \end{aligned}$	$\begin{aligned} & 2.79 \\ & (1: 99) \end{aligned}$	$\begin{aligned} & 1.65 \\ & (6: 94) \end{aligned}$
STO-3	$\begin{aligned} & 2.10 \\ & (3: 97) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (3: 97) \end{aligned}$	$\begin{aligned} & 3.44 \\ & (0: 100) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (0: 100) \end{aligned}$	$\begin{aligned} & 2.42 \\ & (2: 98) \end{aligned}$
3-21G	$\begin{aligned} & 1.12 \\ & (13: 87) \end{aligned}$	$\begin{aligned} & 1.16 \\ & (12: 88) \end{aligned}$	$\begin{aligned} & 1.94 \\ & (3: 97) \end{aligned}$	$\begin{aligned} & 1.94 \\ & (3: 97) \end{aligned}$	$\begin{aligned} & 2.51 \\ & (1: 99) \end{aligned}$
6-31G*	$\begin{aligned} & 2.32 \\ & (2: 98) \end{aligned}$		$\begin{aligned} & 2.70 \\ & (1: 99) \end{aligned}$		

${ }^{\text {a }}$) The glutarimidyl ring was unsubstituted in 3-position.
non-neglectable population of the axial conformer at room temperature (up to 13% in Table 4).

Therefore, at elevated temperatures the reactions of both conformers with an N-haloimide 1-5 contribute to the stereoselectivity. In the conformer ax $\mathbf{- 1 9}$ carrying an axial imidyl substituent, a syn-attack will be strongly hindered and therefore this conformer will contribute to a large trans-selectivity. In contrast, the discrimination between syn- and anti-attack on the radical eq-19 with the imidyl substituent in equatorial position will be smaller. If the temperature is decreased the contribution of the second stable axial conformation to the observed selectivity will decrease resulting in the smaller selectivity of the equatorial conformer.

In Table 2, the observed isomer distributions for the addition of three N-haloimides $\mathbf{1 , 2}$ and $\mathbf{4}$ to norbornene (9h) are compared. In all cases the exo,exo-isomer is favored, and the endo,endo-isomer could not be detected.

Due to the bicyclic structure the conformations of the alkene 9 h and of the adduct radicals $\mathbf{1 0 h}$ and $\mathbf{1 1 h}$ are not very flexible. In the first reaction step, the imidyl radical 6 or $\mathbf{7}$ can add from the exo- or the endo-side to norbornene ($\mathbf{9 h}$) forming the exo-adduct radicals exo10h or exo-11h. The exo-attack is favored for both imidyl radicals 6 and 7, and the exo-orientation of the imidyl moiety is found in $70 \%(\mathbf{1 6 h})$ to $77 \%(\mathbf{1 3 h}, \mathbf{1 4 h})$ of the products.

The orientation of the halogen atom is determined in the second reaction step. As in the first step, an exoattack competes with an endo-attack but now the orientation of the imidyl substituent has an influence on the product formation as well. For the halogen transfer, the exo-orientation is favored even more: 70% (16h), 78% $\mathbf{(1 4 h})$ and 83% ($\mathbf{1 3 h}$). The syn- or anti-effect of the imidyl substituent is therefore not as important as the
shielding by a methylene or an ethylene bridge in the norbornane bicyclus.

We thank Prof. Dr. C. Rüchardt for his generous support of this work and J. Sommer and R. Zimmer for experimental assistance.

Experimental

General Procedure for the Radical Addition of N-Haloimides $\mathbf{1 - 5}$ to Alkenes 9: 30 mmol of the alkene $\mathbf{9}$ was dissolved in 50 mL of dichloromethane. Then 3.00 mmol of N -haloimide $\mathbf{1}-\mathbf{5}$ was added. Irradiations of N-chloroimides $(\mathbf{2}, \mathbf{4})$ were carried out in a quartz flask, or in a Pyrex flask after addition of an initiator (AIBN or di-tert-butylperoxide). N -Bromoimide ($\mathbf{1 , 3}, \mathbf{5}$) runs were irradiated in Pyrex flasks (see tables $5-10$ for details). The mixtures were irradiated by an UV lamp (distance to the flask 1 cm). Due to the lamp heat, the reaction mixture was brought to reflux. The end of the reaction was detected by a potassium iodide-starch paper, see also ref. [4e]. Work-up procedure (see also tables):
Method A. After evaporation to dryness, the product was purified by column chromatography (SiO_{2} and dichloromethane).
Method B. After evaporation to dryness, the crude product was dissolved in ca. 20 ml of dichloromethane and washed 3 times with 20 ml of sodium bicarbonate (10% in water). After drying the organic layer with magnesium sulfate, the solvent was distilled off, and the residue was recrystallized from ethanol/water (1:1).
Method C. After evaporation to dryness, the product was dissolved in ca. 20 ml of dichloromethane and was washed three times with 20 ml of 2 N NaOH . The organic layer was separated and dried with MgSO_{4}. After evaporation to dryness, the residue was either recrystallized from water/ethanol (when solid) or filtered through silica gel with ethyl acetate followed by removal of the solvent.

Table 5 Addition of N-haloimides 1-5 to alkenes 9: irradiation times, yields and elemental analyses for 13-17

	Irradiation time (min) (glassware, initiator)	Yield (\%) ${ }^{\text {a }}$) work-up method	Formula (molecular weight)	Elemental found calculated \% C	ysis $\% \mathrm{H}$	\%N
13c	20	13	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrNO}_{2}$	55.99	5.04	4.16
	(Duran)	A	(322.20)	55.92	5.01	4.35
13d	150	35 (NMR)	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrNO}_{2}$	56.88	5.26	4.15
	(Duran)	21 (isolated) B	(336.23)	57.16	5.40	4.17
$14 a^{\text {b }}$)	1770	35	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClNO}_{2}$	62.82	4.77	5.49
	(Duran, air, 100 mg of AIBN)	A	(251.71)	62.53	4.84	5.61
14c	1240	39 (NMR)	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}_{2}$	64.63	5.79	4.81
	(Quartz, air, $500 \mu \mathrm{l}$ of di-tert-butylperoxide)	B	(277.75)	64.87	5.81	5.04
14d	660	46 (NMR)	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClNO}_{2}$	HR-MS: found: 291.1016 calcd: 291.10260		
	(Quartz, air, $100 \mu \mathrm{l}$ of di-tert-butylperoxide)	11 (isolated) B	(292.77)			
14e	40	25 (NMR)	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClNO}_{3}$	56.89	3.75	5.56
	(Quartz)	21 (isolated) A	(251.67)	57.27	4.01	5.57
14h	195	61 (NMR)	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClNO}_{2}$	65.05	5.19	5.00
	(Quartz; air, 100μ l of di-tert-butylperoxide)	5 (isolated) B	(275.73)	65.34	5.12	5.08
16b		40	$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{ClNO}_{2}$	HR-MS: found: 257.1181 calcd: 257.11823		
	(Duran, $300 \mu \mathrm{l}$ of di-tert-butylperoxide)	D	(257.76)			
16d	330	25 (NMR)	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{ClNO}_{2}$	62.83	8.34	4.84
	(Quartz)	13 (isolated) C	(285.81)	63.08	8.40	4.90
16h ${ }^{\text {c }}$)	95	40	$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ClNO}_{2}$	HR-MS: found: 269.1183 calcd: 269.11822		
	(Duran, $50 \mu \mathrm{l}$ of di-tert-butylperoxide)	E	(269.77)			
16i	120	75	$\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{ClNO}_{2}$	60.03	8.44	5.38
	(Duran, $100 \mu \mathrm{l}$ of di-tert-butylperoxide)	C	(259.78)	60.11	8.54	5.39
16j		46	$\left.\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{ClNO}_{2}\right)$	HR-MS: found: 287.1653 calcd: 287.16519		
	(Duran, $250 \mu \mathrm{l}$ of di-tert-butylperoxide)		(287.83)			
17b	55	15 (NMR)	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrNO}_{2}$	59.43	4.56	3.76
	(Duran)	A	(358.23)	$\left.60.35^{\mathrm{d}}\right)$	4.50	3.91
17i	115	35	$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{BrNO}_{2}$	59.96	5.01	3.79
	(Duran)	A	(360.25)	60.01	5.04	3.89
17j	60	21	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrNO}_{2}$	61.44	5.71	3.61
	(Duran)	A	(388.30)	61.86	5.71	3.48
				HR-MS: found: 387.0831 calcd: 387.08340		

${ }^{\text {a }}$) Based on N-haloimides $\mathbf{1}-\mathbf{5}$. ${ }^{\text {b }}$) 10 mmol of $\mathbf{2}, 100 \mathrm{mmol}$ of cyclopentene $(\mathbf{9 a}), 150 \mathrm{ml}$ of dichloromethane. ${ }^{\text {c }}$) 25 ml of dichloromethane.
${ }^{\text {d }}$) In the ${ }^{1} \mathrm{H}$ NMR spectrum, no impurities $>5 \%$ were found.

Table 6 Addition of N-halophthalimides $\mathbf{1}$ and $\mathbf{2}$ to alkenes $9 .{ }^{1} \mathrm{H}$ NMR data of the addition products $\mathbf{1 3}, \mathbf{1 4}$ and $\mathbf{1 7}[\delta(\mathrm{ppm})$, $\left.250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right]$.

	alkyl protons (former alkene)	-CH-Im and -CHBr (former alkene)	arene protons (former imide)
13c	$1.5-2.0(\mathrm{~m}, 6 \mathrm{H}) 2.1-2.5(\mathrm{~m}, 4 \mathrm{H})$	4.50 (dt, $\left.J_{t}=10.0 \mathrm{~Hz}, J_{d}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$	7.72 ($\left.\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}\right)$
		5.98 (ddd, $J=12.0 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}$,	7.85 ($\left.\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}\right)$
13d ${ }^{\text {a }}$) $1.5-2.1(\mathrm{~m}, 9 \mathrm{H}) 2.1-2.6$ (m, 3H)		4.70 (ddd, $J=2.1 \mathrm{~Hz}, J=8.9 \mathrm{~Hz}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$	$7.72\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right)$
		5.16 (ddd, $J=3.1 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$	7.85 ($\left.\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}\right)$
14a	$1.9-2.3(\mathrm{~m}, 5 \mathrm{H}) 2.45\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right)$	4.73 ($\left.\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}\right)$	7.73 ($\left.\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}\right)$
			7.85 ($\left.\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}\right)$
14c	$1.5-2.4(\mathrm{~m}, 10 \mathrm{H})$	$4.37\left(\mathrm{dt}, J_{d}=2.8 \mathrm{~Hz}, J_{t}=10.4 \mathrm{~Hz}, 1 \mathrm{H}\right) 4.79(\mathrm{ddd}$,	7.72 ($\left.\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}\right)$
		$J=4.0 \mathrm{~Hz}, J=8.2 \mathrm{~Hz}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H})$	7.85 ($\left.\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}\right)$

Table 6 (continued)

	alkyl protons (former alkene)	- $\mathrm{CH}-\mathrm{Im}$ and - CHBr (former alkene)	arene protons (former imide)
14d	1.3-2.6 (m, 12H)	$\begin{aligned} & 4.2-4.4(\mathrm{~m}, 0.6 \mathrm{H}) \text { cis } 4.6(\mathrm{ddd}, J=10.7 \mathrm{~Hz}, \\ & J=8.8 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, 0.7 \mathrm{H}) \text { trans } 4.95(\mathrm{ddd}, \\ & J=8.7 \mathrm{~Hz}, J=5.8 \mathrm{~Hz}, J=2.9 \mathrm{~Hz}, 0.7 \mathrm{H}) \text { trans } \end{aligned}$	$\begin{aligned} & 7.69\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right) \\ & 7.81\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right) \end{aligned}$
14e	2.23 (dddd, $J=7.0 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, J=6.1 \mathrm{~Hz}$, $J=13.2 \mathrm{~Hz}, 0.55 \mathrm{H}$) trans, 2.58 (dddd, $J=3.1 \mathrm{~Hz}$, $J=8.4 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, J=11.6 \mathrm{~Hz}, 0.45 \mathrm{H}) \mathrm{cis}, 2.79$ (ddt, $J_{d}=10.2 \mathrm{~Hz}, J_{d}=12.3 \mathrm{~Hz}, J_{t}=9.1 \mathrm{~Hz}, 0.45 \mathrm{H}$) cis, $2.95\left(\mathrm{dq}, J_{q}=6.8 \mathrm{~Hz}, J_{d}=13.6 \mathrm{~Hz}, 0.55 \mathrm{H}\right)$ trans, 3.98 (ddd, $J=7.0 \mathrm{~Hz}, J=8.2 \mathrm{~Hz}, J=8.9 \mathrm{~Hz}, 0.45 \mathrm{H}$) cis, 4.16 (dt, $J_{d}=8.2 \mathrm{~Hz}, J_{t}=6.7 \mathrm{~Hz}, 0.55 \mathrm{H}$) trans, 4.31 (ddd), $J=6.1 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, J=8.2 \mathrm{~Hz}, 0.55 \mathrm{H}$) trans, 4.50 (ddd, $J=9.3 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}, 0.45 \mathrm{H}$) cis	4.62 (ddd, $J=8.6 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}$, 0.45 H) cis 5.01 (ddd, $J=5.1 \mathrm{~Hz}, J=3.7 \mathrm{~Hz}$, $J=7.1 \mathrm{~Hz}, 0.55 \mathrm{H})$ trans $5.98(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $0.55 \mathrm{H})$ trans $6.17(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 0.45 \mathrm{H}) \mathrm{cis}$ H)	$\begin{aligned} & 7.76\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right) \\ & 7.88\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right) \end{aligned}$
14h	$\begin{aligned} & 1.2-1.9(\mathrm{~m}, 4 \mathrm{H}) \\ & 1.9-2.2(\mathrm{~m}, 1 \mathrm{H}) \\ & 2.2-2.7(\mathrm{~m}, 2.89 \mathrm{H}) \end{aligned}$	$\left.4.11(\mathrm{dd}, J=2.4 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, 0.58 \mathrm{H})^{c}\right)$ $\left.\left.4.25\left(\mathrm{~m}_{\mathrm{c}}, 0.22 \mathrm{H}\right)^{\mathrm{d}}\right) 4.61(\mathrm{t}, J=4.0 \mathrm{~Hz}, 0.31 \mathrm{H})^{\mathrm{e}}\right)$ $4.97\left(\mathrm{~m}_{\mathrm{c}}, 0.58 \mathrm{H}\right){ }^{\mathrm{c}}$) $\left.5.25(\mathrm{dd}, J=3.7 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, 0.31 \mathrm{H})^{\mathrm{e}}\right)$	$\begin{aligned} & 7.73\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right) \\ & 7.87\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right) \end{aligned}$
17b	$\begin{aligned} & 1.4-1.6(\mathrm{~m}, 2 \mathrm{H}) \\ & 1.7-1.9(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.9-2.1(\mathrm{~m}, 3 \mathrm{H}) \\ & 2.4-2.6(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	5.27 ($\left.\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}\right)$	$\begin{aligned} & 7.77(\mathrm{dd}, J=8.2 \mathrm{~Hz}, \\ & J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) \\ & 8.22(\mathrm{dd}, J=1.2 \mathrm{~Hz}, \\ & J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) 8.60 \\ & \left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right) \end{aligned}$
17i ${ }^{\text {f }}$	1.25 (s, 9H)	$\begin{aligned} & 4.30(\mathrm{dd}, J=14.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}) \\ & 4.62(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}) \\ & 5.02(\mathrm{dd}, J=14.0 \mathrm{~Hz}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 7.78(\mathrm{dd}, J=9.0 \mathrm{~Hz}, \\ & J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) \\ & 8.26(\mathrm{dd}, J=9.0 \mathrm{~Hz}, \\ & J=1.0 \mathrm{~Hz}, 2 \mathrm{H}) 8.64 \\ & (\mathrm{dd}, J=7.0 \mathrm{~Hz}, \\ & J=1.0 \mathrm{~Hz}, 2 \mathrm{H}) \end{aligned}$
$\left.17 \mathbf{j}^{\mathrm{b}}\right)$	$\begin{aligned} & 0.84\left(\mathrm{~m}_{\mathrm{c}}, 3 \mathrm{H}\right) \\ & 1.1-1.5(\mathrm{~m}, 8 \mathrm{H}) \\ & 1.74\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right) \\ & 1.89\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right) \end{aligned}$	$\begin{aligned} & 4.36(\mathrm{dd}, J=6.0 \mathrm{~Hz}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}) \\ & 4.54\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right) \\ & 4.75(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 7.74(\mathrm{dd}, J=8=0 \mathrm{~Hz}, \\ & J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) \\ & 8.21(\mathrm{dd}, J=8.0 \mathrm{~Hz}, \\ & J=2.0 \mathrm{~Hz}, 2 \mathrm{H}) 8.59 \\ & (\mathrm{dd}, J=7.0 \mathrm{~Hz}, \\ & J=2.0 \mathrm{~Hz}, 2 \mathrm{H}) \end{aligned}$

${ }^{\text {a }}$) Only the trans $\mathbf{- 1 3 d}$ was isolated. ${ }^{\text {b }}$) The pure isolated product was the $\alpha \mathbf{- 1 7 j}$. In the crude ${ }^{1} \mathrm{H}$ NMR $\mathbf{3 3 \%}$ of $\beta \mathbf{- 1 7 \mathbf { j }}$ was found ($\delta=4.16$).
${ }^{\text {c }}$) exo-Imidyl, exo-Cl. ${ }^{\mathrm{d}}$) exo-Imidyl, endo-Cl. ${ }^{\mathrm{e}}$) endo-Imidyl, exo-Cl. ${ }^{\text {f }}$) Only one regioisomer was found in the ${ }^{1} \mathrm{H}$ NMR.

Table 7 Addition of N-chloro-3,3-dimethylglutarimide (4) to alkenes $9 .{ }^{1} \mathrm{H}$ NMR data of the addition products $\mathbf{1 6}$ [δ (ppm), $\left.250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right]$.

Nr.	alkyl protons (former alkene)	-CHIm- und -CHCl(former alkene)	CH_{2} (former imide)	CH_{3} (former imide)
16b	$1.2-2.3(\mathrm{~m}, 8 \mathrm{H})$	$\begin{aligned} & 4.66(\mathrm{ddd}, J=12.0 \mathrm{~Hz}, J=11.3 \mathrm{~Hz}, \\ & J=3.9 \mathrm{~Hz}, 1 \mathrm{H}) \text { trans, } 4.80\left(\mathrm{dt}, J_{t}=11.1 \mathrm{~Hz},\right. \\ & \left.J_{d}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right) \text { trans, } 5.7-5.8(\mathrm{~m}, 1 \mathrm{H}) \\ & \text { cis } 5.9-6.1(\mathrm{~m}, 1 \mathrm{H}) \text { cis } \end{aligned}$	2.50 (s, 4H)	1.10 (s, 6H)
16d	$\begin{aligned} & 1.4-1.8(\mathrm{~m}, 8 \mathrm{H}) \\ & 1.9-2.1(\mathrm{~m}, 2 \mathrm{H}) \\ & 2.1-2.4(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	4.95 (ddd, $J=11.0 \mathrm{~Hz}, J=5.65 \mathrm{~Hz}, J=2.9 \mathrm{~Hz}$ 1 H) 5.17 (ddd, $J=10.7 \mathrm{~Hz}, J=7.9 \mathrm{~Hz}$, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$	$2.51\left(\mathrm{~m}_{\mathrm{c}}, 4 \mathrm{H}\right)$	$\begin{aligned} & 1.07(\mathrm{~s}, 3 \mathrm{H}) \\ & 1.15(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$
16h	$1.1-2.7(\mathrm{~m}, 18 \mathrm{H})^{\text {a }}$)	$\begin{aligned} & \left.4.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.3 \mathrm{H})^{\mathrm{b}}\right) \\ & \left.4.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.3 \mathrm{H})^{\mathrm{b}}\right) \\ & \left.4.59(\mathrm{dd}, J=2.0 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 0.4 \mathrm{H})^{\mathrm{c}}\right) \\ & \left.\left.4.86\left(\mathrm{~m}_{\mathrm{c}}, 0.7 \mathrm{H}\right)^{\mathrm{a}}\right)^{\mathrm{c}}\right) 5.23(\mathrm{dd}, J=2.0 \mathrm{~Hz}, J=3 . \end{aligned}$	${ }^{\text {a }}$) ${ }^{\text {d }}$)	${ }^{\text {a }}$)
$16 i$	1.11 (s, 9H)	$\begin{aligned} & 3.80(\mathrm{dd}, J=14.0 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}) \\ & 4.13(\mathrm{dd}, J=10.5 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}) \\ & 4.42(\mathrm{dd}, J=14.0 \mathrm{~Hz}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}) \end{aligned}$	$2.52(\mathrm{~s}, 4 \mathrm{H})$	1.13 (s, 6H)
$16 j^{\text {e }}$)	$\begin{aligned} & 0.88\left(\mathrm{~m}_{\mathrm{c}}, 3 \mathrm{H}\right) \\ & 1.1-1.8(\mathrm{~m}, 16 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 3.77(\mathrm{dd}, J=12.3 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}) \alpha \\ & 4.2-4.3(\mathrm{~m}, 2 \mathrm{H}) \alpha \\ & 3.63(\mathrm{dd}, J=11.3 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}) \beta \\ & 4.0-4.1(\mathrm{~m}, 2 \mathrm{H}) \beta \end{aligned}$	2.53 (s, 4H) $\alpha+\beta$	1.12 (s, 6H) $\alpha+\beta$

${ }^{\text {a }}$) The alkyl protons of the former norbornene and the proton of the imidyl moeity overlap. ${ }^{\text {b }}$) exo-Imidyl, endo-Cl. - c) exo-Imidyl, exo-Cl. ${ }^{\text {d }}$) endo-Imidyl, exo-Cl. ${ }^{\text {e }}$) The crude reaction mixture contained 90% of the α-regioisomer $\alpha-\mathbf{1 6 j}$ and 10% of the β-regioisomer β - $\mathbf{1 6 \mathbf { j }}$.

Table 8 Addition of N-Haloimides $\mathbf{1 - 5}$ to alkenes $\mathbf{9}$. Chromatography details, melting points and MS data of the addition products 13-17

	$\begin{aligned} & \text { chromatography } \\ & \left(\mathrm{SiO}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), R_{f} \end{aligned}$	m. p. $\left({ }^{\circ} \mathrm{C}\right)$	m / z (\%) (EI, 70 eV)
13c	A, 0.65	99-101 ${ }^{\text {a }}$	321, 323 (M, 10, 10), 242 (M-Br, 42), 186 (45), 160 (34), 148 (100), 130 (37), 105 (14), 104 (42), 95 (51), 76 (44)
13d	B	$76\left(\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}\right)$	$\begin{aligned} & 335,337(\mathrm{M}, 5,5), 256(\mathrm{M}-\mathrm{Br}, 21), 186\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{Br}, 59\right), 173\left(\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{Br}, 13\right), 160 \\ & (39), 148(100), 130(35), 104(26) \end{aligned}$
14a	B	$133\left(\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}\right)$	249, 251 (14, 4; M), 186 (M-C2 $\left.\mathrm{H}_{4} \mathrm{Cl}\right), 160$ (8), 148 (100), 130 (40), 105 (10)
14c	A, 0.78	$83{ }^{\text {a }}$)	277, $279(22,7, M), 242(6, \mathrm{M}-\mathrm{Cl}), 186\left(100, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}\right), 173\left(9, \mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{Cl}\right), 160$ $\left(36, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Cl}\right), 148\left(95, \mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{Cl}\right), 130(54), 105(17), 104(44)$
14d	A, 0.82	55-58 ${ }^{\text {a }}$	291, 293 ($17,6, \mathrm{M}$), 256 ($6, \mathrm{M}-\mathrm{Cl}), 186$ ($\left.75, \mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{Cl}\right), 173$ ($23, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}$), 160 (35), 148 (100), 130 (37), 108 (31), 104 (29)
14e	$\mathrm{A}, 0.62$ and 0.57 (isomers)	$95^{\text {a }}$)	$\begin{aligned} & 215(49, \mathrm{M}-\mathrm{HCl}) \mathrm{b}), 187\left(37, \mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right), 186\left(26, \mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Cl}\right), 148\left(83, \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{ClO}\right), \\ & 130(88), 105(34), 104(33), 41(100) \end{aligned}$
14h	A, 0.7	$112{ }^{\text {a }}$	275, 277 (100, 37, M), 276 (38), 274 (36), 241 ($15, \mathrm{M}+\mathrm{H}-\mathrm{Cl}), 240$ ($15, \mathrm{M}-\mathrm{Cl}$), 239 $(13, \mathrm{M}-\mathrm{HCl}), 211\left(47, \mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right), 200\left(15, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Cl}\right), 186\left(23, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{Cl}\right), 172$ (36, M-C $\left.{ }_{5} \mathrm{H}_{8} \mathrm{Cl}\right), 160$ (41), 148 (57), 130 (25), 105 (6), 104 (28)
16b	D	yellow oil	$221(3, \mathrm{M}-\mathrm{HCl}), 142\left(100, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{Cl}\right), 114\left(18, \mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{ClO}\right)$
16d	C	$94\left(\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}\right)$	$\begin{aligned} & 285,287(2,<1, \mathrm{M}), 250(16, \mathrm{M}-\mathrm{Cl}), 180\left(7, \mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{Cl}\right), 142\left(100, \mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{Cl}\right), \\ & 114(23), 83(57) \end{aligned}$
16h	E, 0.68	colorless oil	287, 289 ($\left.36,100, \mathrm{M}+\mathrm{NH}_{4}\right)^{\text {c }}$), 270, $272(63,20), 234(63)$
16i	C	$\begin{aligned} & 110-115 \\ & \left(\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$	$259,261(11,4, \mathrm{M}), 203,205\left(22,8, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right), 168\left(26, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}\right), 154(24), 151$ $(34), 136(100), 108(32), 83(56)$
16j	D	yellow oil	$\begin{aligned} & 287,289(2,1, \mathrm{M}), 252(7, \mathrm{M}-\mathrm{Cl}), 154\left(11, \mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{14}\right), 142\left(100, \mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{Cl}\right), 126 \\ & (13), 83(53) \end{aligned}$
17b	A, 0.57	177	357, 359 (8, 8, M), 198 (100), 180 (12), 152 (6)
17i	A	$160{ }^{\text {d }}$)	$359,361(28,29, \mathrm{M}), 280(9, \mathrm{M}-\mathrm{Br}), 224\left(9, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right), 210\left(59, \mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{Br}\right), 197$ $\left(100, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{Br}\right)$
17j	A, 0.55	82	$\begin{aligned} & 387,389(11,11, \mathrm{M}), 308 \text { (44, M-Br), } 210 \text { (} 55 \text {), } 198 \text { (100), } 197 \text { (} 74 \text {), } 180 \text { (} 41 \text {), } 152 \\ & (20) \end{aligned}$

${ }^{\text {a }}$) After evaporation of the solvent. b) No mass peak in the EI spectrum, but the CI spectrum (isobutane) showed $\mathrm{M}+\mathrm{CH}_{3}$: 266 (100), 268 (11). ${ }^{\text {c }}$) CI-Spektrum (ammonia, 170 eV). ${ }^{\mathrm{d}}$) Ref [8]: $126-127^{\circ} \mathrm{C}$.

Table 9 IR data of the addition products $13,14,16$ and 17

		$v\left(\mathrm{~cm}^{-1}\right)$
13c	KBr	1765 (m), 1710 (s), 1395 (s), 1380 (s), 1355 (s), 730 (s)
13d	KBr	1765 (s), 1710 (vs), 1395 (s), 1385 (s), 1365 (s), 1115 (s), 730 (vs)
14a	KBr	1770 (m), 1705 (s) 1090 (m), 730 (s)
14c	KBr	1765 (m), 1705 (s), 1390 (s), 1380 (s), 725 (s)
14d	KBr	1770 (m), 1710 (s), 1380 (s), 1120 (m), 1090 (m), 725 (s).
14e	KBr	1770 (m), 1720 (s), 1375 (s), 1060 (s), 725 (s)
14h	KBr	1765 (s), 1710 (vs), 1375 (s), 1110 (s), 720 (s)
16b	film	1730 (m), 1670 (s), 1460 (m), 1400 (m), 1360 (m), 750 (m)
16d	KBr	1715 (m), 1685 (s), 1355 (s), 1275 (s), 1235 (s), 640 (m), 610 (m)
16h	film	1730 (m), 1680 (s), 1460 (m), 1420 (m), 1360 (m), 640 (m)
16i	KBr	1723 (m), 1675 (s), 1360 (m), 1145 (m), 630 (m)
16j	film	1730 (m), 1680 (s), 1360 (m), 680 (m), 630 (m)
17b	KBr	1695 (s), 1655 (s), 1340 (s), 1240 (s), 785 (s)
17i	KBr	1645 (s), 1575 (s), 1315 (s), 1225 (s), 935 (m), 765 (s)
17j	KBr	1700 (s), 1660 (s), 1650 (s), 1385 (s), 1360 (s), 1335 (s), 1240 (s), 1175 (s), 770 (vs)

Table 10 Stereoselectivity of the radical addition of N-Haloimides $\mathbf{1}-\mathbf{5}$ to cyclic alkenes $\mathbf{9 a}-\mathbf{h}$. The selectivities were determined from the crude reaction mixtures by GC and ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The retention times and the chemical shift used for the determination of the stereoselectivity are listed.

GC or	trans-product		cis-product
${ }^{1} \mathrm{H}-\mathrm{NMR}$		$r_{\mathrm{t}}(\mathrm{min})$ or $\delta(\mathrm{ppm})$	

$\mathbf{1 3 c}$	${ }^{1} \mathrm{H}-\mathrm{NMR}$		only trans-product in ${ }^{1} \mathrm{H}-\mathrm{NMR}$
$\mathbf{1 3 d}$	GC	91	9
		19.3 min	20.0 min

Table 10 (continued)

	$\begin{aligned} & \text { GC or } \\ & { }^{1} \mathrm{H}-\mathrm{NMR} \end{aligned}$	trans-product	$r_{\mathrm{t}}(\mathrm{min})$ or $\delta(\mathrm{ppm})$	cis-product
13g ${ }^{\text {a }}$)	${ }^{1} \mathrm{H}$ NMR	87		13
		5.74 ppm		5.55 ppm
14a	${ }^{1} \mathrm{H}$ NMR		only trans-isomer	
14b	${ }^{1} \mathrm{H}$ NMR	97		3
		4.20, 4.73		5.6-5.8, $5.9-6.1$
14c	${ }^{1} \mathrm{H}$ NMR		only trans-isomer	
14d	${ }^{1} \mathrm{H}$ NMR	74		26
		4.57, 4.95		4.2-4.4
14e	${ }^{1} \mathrm{H}$ NMR	58		42
		5.98		6.17
14 f	${ }^{1} \mathrm{H}$ NMR	64		36
		4.98, 5.22		5.78
16b	${ }^{1} \mathrm{H}$ NMR	94		6
		4.66, 4.80		$5.7-5.8,5.9-6.1$
16d	${ }^{1} \mathrm{H}$ NMR		only trans-isomer	
17b	$\mathrm{GC}^{\text {b }}$)		only one isomer	

${ }^{\text {a }}$) Ref. 7. ${ }^{\text {b }}$) GC-conditions: DB $1 / 25 \mathrm{~m}, 5 \mathrm{~min}$ at $100^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C} / \mathrm{min}$ until $250^{\circ} \mathrm{C}, 20 \mathrm{~min}$ at $250^{\circ} \mathrm{C}$.

Method D. See method C, but 20 ml of diethyl ether was used to dissolve the crude product.
Method E. See method A, but ethyl acetate/dichloromethane ($9: 1$) was used for chromatography. - In some cases the material was purified twice to obtain analytically pure material (see Table 8 for details).

References

$[1]$ a) K. Ziegler, A. Späth, E. Schaaf, W. Schumann, E. Winkelmann, Liebigs Ann. Chem. 1942, 551, 80; b) L. Horner, E. H. Winkelmann, Angew. Chem. 1959, 71, 349
[2] a) J. Adam, P. A. Gosselain, P. Goldfinger, Nature (London) 1953, 171, 704; b) P. A. Gosselain, J. Adam, P. Goldfinger, Bull. Soc. Chim. Belg. 1956, 65, 533
[3] First publications on imidyl radicals: a) J. G. Traynham, Y.S. Lee, J. Am. Chem. Soc. 1974, 96, 3590; b) J. C. Day, H. Lindstrom, P. S. Skell, J. Am. Chem. Soc. 1974, 96, 5616
$[4]$ a) P. S. Skell, J. C. Day, Acc. Chem. Res. 1978, 11, 381; b) U. Lüning, P. S. Skell, Tetrahedron 1985, 41, 4289; c) P. S. Skell, U. Lüning, D. S. McBain, J. M. Tanko, J. Am. Chem. Soc. 1986, 108, 121; d) D. D. Tanner, C. P. Meintzer, J. Am.

Chem. Soc. 1985, 107, 6584; e) Y. L. Chow, D.-C. Zhao, M. Kitadani, K. S. Pillay, Y. M. A. Naguib, T.-I. Ho, J. Chem. Soc., Perkin Trans. 2, 1990, 361; f) J. Lind, X. Shen, T. E. Eriksen, G. Merényi, L. Eberson, J. Am. Chem. Soc. 1991, 113, 4629; g) P. H. Kasai, J. Am. Chem. Soc. 1992, 114, 2875; h) J. L. Gainsforth, M. Klobukowski, D. D. Tanner, J. Am. Chem. Soc. 1997, 119, 3339; i) G. Merényi, J. Lind, L. Eberson, Acta Chem. Scand. 1998, 62, 62
$[5]$ a) J. C. Day, M. G. Katsaros, W. D. Kocher, A. E. Scott, P. S. Skell, J. Am. Chem. Soc. 1978, 100, 1950; b) U. Lüning, D. S. McBain, P. S. Skell, J. Org. Chem. 1986, 51, 2077
[6] U. Lüning, A. Kirsch, Chem. Ber. 1993, 126, 1171
[7] A. Kirsch, U. Lüning, J. prakt. Chem. 1998, 340, 129
[8] J. C. Day, N. Govindaraj, D. S. McBain, P. S. Skell, J. M. Tanko, J. Org. Chem. 1986, 51, 4959

Address for correspondence:
Prof. Dr. Ulrich Lüning
Christian-Albrechts-Universität zu Kiel
Institut für Organische Chemie
Olshausenstr. 40
D - 24098 Kiel
Fax: Internat. code (0) 4318801558
E-mail: luening@oc.uni-kiel.de

[^0]: ${ }^{1}$) Imidyl Radicals. 2: see ref. [7]

[^1]: ${ }^{\text {a }}$) Based on N-haloimides 1-5.

