Imidyl Radicals. 3¹)

Stereoselectivity of Radical Additions of N-Haloimides to Cyclic Alkenes

André Kirsch

Freiburg, Institut für Organische Chemie und Biochemie der Universität

Ulrich Lüning * and Oliver Krüger

Kiel, Institut für Organische Chemie der Christian-Albrechts-Universität

Dedicated to Prof. Dr. C. Rüchardt on the Occasion of his 70 th Birthday

Received April 12th, 1999, respectively July 29 th, 1999

Keywords: Alkenes, Halogenes, Radicals, Imidyl radicals, Stereoselectivity

Abstract. The addition of *N*-haloimides (1-5) to alkenes **9** *via* imidyl radicals **6**–**8** introduces a halogen atom and an imidyl moiety to vicinal C-atoms of a carbon chain. With cyclic alkenes, the *trans/cis*-stereoselectivity depends on the nature of the imidyl unit, on the halogen atom, and on the

alkene and varied between 58:42 and >95:<5. Temperature dependend studies showed higher *trans/cis*-selectivities at elevated temperatures, which may be caused by different conformations of the adduct radicals 10-12, each of them exhibiting a different stereoselectivity.

N-Haloimides (1-5) are used in two types of radical chain reactions: (i) the selective Ziegler bromination of allylic and benzylic positions [1], which are bromine atom chain reactions [2] and (ii) imidyl radical [3, 4] chain reactions like substitutions and especially additions to double bonds [5, 6, 7] (see scheme 1).

In this work, the addition to cyclic alkenes **9** has been investigated. Such additions may give a variety of products: regio- and stereoisomers. The regioselectivity of the radical addition of *N*-haloimides has already been studied [7]. This selectivity is determined during the first step of the radical chain when an imidyl radical $\mathbf{6}$ -

Scheme 1. Radical addition of N-haloimides 1-5 to alkenes 9 to form addition products 13-17

¹) Imidyl Radicals. 2: see ref. [7]

J. Prakt. Chem. **1999**, *341*, No. 7 © WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999 1436-9966/99/3410X-649 \$ 17.50 + .50/0 649

FULL PAPER

8 adds to the alkene **9** forming an adduct radical **10**–**12**. But reversible addition may lead to changes in the regioselectivity [7].

In the second step of the radical chain, the halogen atom is transfered from an N-haloimide 1-5 to the adduct radical 10-12. In this transfer reaction, a second stereocenter may be established. But in contrast to the addition of the imidyl moiety to the alkene the halogen atom transfer to the adduct radicals 10-12 is not reversible because the radical character is lost and the nonradical products 13-17 are formed. With cyclic alkenes 9, two possible orientations of this halogen atom in respect to the imidyl moiety are possible: *cis* and *trans* (see scheme 2). Both elements of an N-haloimide, the imidyl moiety and the halogen atom may influence the stereoselectivity.

Scheme 2 The addition of imidyl radicals 1-5 to cycloalkenes $9\mathbf{a}-\mathbf{g}$ forms adduct radicals 18. Halogen transfer by *syn*- or *anti*-attack gives the stereoisomers *cis*- $9\mathbf{a}-\mathbf{g}$ and *trans*- $9\mathbf{a}-\mathbf{g}$.

Therefore, we have investigated the stereoselectivity of the addition of five different *N*-haloimides to cycloalkenes: *N*-bromophthalimide (**1**), *N*-chlorophthalimide (**2**), *N*-bromo-3,3-dimethylglutarimide (**3**), *N*-chloro-3,3-dimethylglutarimide (**4**), and *N*-bromonaphthalene1,8-dicarboximide (5). Some of the addition products 13–17 are literature-known, the addition of N-chloro-3,3-dimethylglutarimide (4) and N-bromonaphthalene-1,8-dicarboximide (5) to a variety of alkenes 9 yielding the addition products 16 and 17 was not studied yet. Therefore, not only the reaction of **4** and **5** with cyclic alkenes 9a - h has been investigated but the addition to standard alkenes like 3,3-dimethylbutene (9i) and 1octene (9j) has been carried out for comparison as well. As with other N-haloimides [7] the addition to 3,3dimethylbutene (9i) only gives the α -regioisomers. But the addition of 4 and 5 to 1-octene (9i) gave two regioisomers as did the additions of 1-3. As seen for N-bromo- (1) and N-chlorophthalimide (2), also the addition of the N-chloroglutarimide 4 was more selective than the addition of the bromo compound 3. A small regioselectivity was also found for the N-bromonaphthalene-1,8-dicarboximide (5):

 α/β -ratios for *N*-bromoimides: **1**: 80 : 20, **3**: 60 : 40, **5**: 67 : 33.

 α/β -ratios for *N*-chloroimides: **2**: 93 : 7, **4**: 90 : 10.

All new addition products 13-17 have been fully characterized. In cases where microanalyses failed high resolution mass spectra (HR-MS) were recorded to prove the composition, and the purity of the compounds was checked by GC if not stated otherwise in the experimental section.

To study the stereoselectivity of the radical addition, five N-haloimides 1-5 have been treated with seven cyclic alkenes 9a-g and with the bicyclic norbornene (9h). Table 1 summarizes the *trans/cis*-ratios for the addition to the cyclic alkenes 9a-g, Table 2 lists the *exo/ endo*-isomers of the additions to norbornene. The stereoselectivities were directly determined from the reaction mixtures by GC or ¹H NMR. During isolation, a change of the concentration of one isomer in respect to

Table 1 *trans/cis*-Ratios for the addition of *N*-haloimides 1-5 to cyclic alkenes 9a-g at 40 °C, determined by GC or ¹H NMR. If only one isomer could be detected, >95 : <5 is listed.

addition	1	2	3	4	5
to	trans/cis	trans/cis	trans/cis	trans/cis	trans/cis
9a	13a: 92:8 b)	14a: >95:<5	15a: >95:<5 b)		
9b	13b: 92:8 ^b)	14b: 97:3 °)	15b: >95:<5 ^b)	16b: 94:6	17b: >95:<5
9c	13c: >95: <5	14c: >95:<5	,		
9d	13d: 97:3	14d: 74:26		16d: >95:<5	
9e	13e: 87:13 ^a) ^b)	14e: 58:42 a)			
9f	13f: 92:8 ^a) ^b)	14f: $64:36^{a}$ (c)			
9g	13g: 87:13 °)	, ,			

^a) Only α -isomer. ^b) Ref [6]. ^c) Ref [7].

FULL PAPER

Table 2 Stereoisomer distribution of the products 13h, 14h and 16h obtained by the addition of *N*-haloimides 1, 2 and 4 to norbornene (9h)

imidyl	halogen	13h	14h	16h
exo	exo	59	55	40
exo	endo	18	22	30
endo	exo	24	23	30
endo	endo	<5	<5	<5

the other(s) was observed in some cases. This explains the different isomer ratios in Table 1-3 and in the experimental.

As Table 1 shows, in all additions the *trans*-products are favored. The selectivities vary from 58:42 to >95: <5 and depend on (i) the nature of the alkene **9**, (ii) the imidyl moiety, and (iii) on the halogen atom.

Since the stereochemistry of the second stereocenter is established during the abstraction of the halogen atom by the adduct radical 10-12, the transition states for this reaction step must be inspected to understand the *trans*-selectivity. In the adduct radical 10-12, the first stereocenter is already formed by the addition of the imidyl radical 6-8 to the alkene 9. This results in a differentiation of the two sides of the cyclus, and an attack of an *N*-haloimide will be slowed down if it occurs as a *syn*-attack rather than an *anti*-attack.

The reactions of the *N*-halophthalimides **1** and **2** with seven- or six-membered cyclic alkenes, respectively, allow to study the influence of the substituents R^1 to R^4 on the stereoselectivity and show the dependence of the *trans/cis*-ratios on the nature of the halogen atom, too. Eight additions have also been investigated at different temperatures: (i) the reaction of **1** with four alkenes (**9a**, **b**, **d**, **f**), and (ii) the reaction of all five *N*-haloimides **1**– **5** with cyclohexene (**9b**) (Table 3).

A decrease of the temperature has two effects on the radical additions: (i) In general, the yields drop, which suggests that competing reactions like hydrogen abstraction or chain terminations are less influenced by decreasing temperature. Reduced adducts resulting from hydrogen transfer to the adduct radicals 10-12 have been isolated as by-products. (ii) The stereoselectivities decrease with decreasing temperature. This is not in accord with the reactivity-selectivity principle. But the effect can be explained by two competing reactions: As stated above, the conformations of the adduct radicals 10-12 are important for the observed stereoselectivities (see scheme 3). Therefore, calculations have been carried out on the adduct radicals with cyclohexene 9b. The conformations of 2-imidyl substituted cyclohexyl radicals and related ones have been calculated with different methods (see Table 4).

Scheme 3. The *trans/cis*-ratios of the products $13a \cdot g - 17a \cdot g$ are determined by the *syn*- or *anti*-attack of the *N*-haloimides 1-5 on the adduct radicals 19 which exist as two conformers in equilibrium, eq-19 and ax-19.

In all cases calculated, the equatorial orientation of a substituent in 2-position of a cyclohexyl radical is energetically favored. But in a number of calculations the energy difference is less than 2 kcal/mol, arguing for a

addit	tion of :		1	2		3		4	L .		5
	<i>T</i> (°C)	trans/cis	yield (%) ^a)	trans/cis	yield (%) ^a)	trans/cis	yield (%) ^a)	trans/cis	yield (%) ^a)	trans/cis	yield (%) ^a)
9a	40	92 : 8 94 : 6	33 23								
	-78	87:13	12								
9b	40	92:8	29	95 : 5	27	>95:5	24	94 : 6	41	>95:5	15
	0	89:11	26	_	0	>95:5	29	74:26	14	>95 : 5	14
	-78	77:23	20			>95:5	32	_	0	_	0
9d	40	97:3	27								
	0	87:13	8								
	-78	74 : 26	3								
9f	40	92:8	25								
	0	92:8	17								
	-78	94 : 6	11								

Table 3 Temperature dependence of the *trans/cis*-product ratios obtained from the addition of *N*-haloimides 1-5 to cycloalkenes 9

^a) Based on *N*-haloimides **1**-**5**.

method	substituent R								
	succinimidyl	phthalimidyl	glutarimidyl ^a)	naphthalene- 1.8-dicarboximidyl	phenyl-				
РСМ	4.68	5.13	6.14	5.21	2.71				
	(0:100)	(0:100)	(0:100)	(0:100)	(1:99)				
AM1	1.88	1.87	2.78	2.79	1.65				
	(4:96)	(4:96)	(1:99)	(1:99)	(6:94)				
STO-3	2.10	1.97	3.44	3.35	2.42				
	(3:97)	(3:97)	(0:100)	(0:100)	(2:98)				
3-21G	1.12	1.16	1.94	1.94	2.51				
	(13:87)	(12:88)	(3:97)	(3:97)	(1:99)				
6-31G*	2.32 (2:98)		2.70 (1:99)						

Table 4 Calculated energy differences (in kcal/mol) between the axial and equatorial conformers of 2-substituted cyclohexyl radicals **19**, and *axial/equatorial* ratios ax-**19** : eq-**19** calculated for 293 K (in parentheses).

^a) The glutarimidyl ring was unsubstituted in 3-position.

non-neglectable population of the axial conformer at room temperature (up to 13% in Table 4).

Therefore, at elevated temperatures the reactions of both conformers with an *N*-haloimide 1-5 contribute to the stereoselectivity. In the conformer ax-19 carrying an axial imidyl substituent, a *syn*-attack will be strongly hindered and therefore this conformer will contribute to a large *trans*-selectivity. In contrast, the discrimination between *syn*- and *anti*-attack on the radical eq-19 with the imidyl substituent in equatorial position will be smaller. If the temperature is decreased the contribution of the second stable axial conformation to the observed selectivity will decrease resulting in the smaller selectivity of the equatorial conformer.

In Table 2, the observed isomer distributions for the addition of three *N*-haloimides **1**, **2** and **4** to norbornene (**9h**) are compared. In all cases the *exo*,*exo*-isomer is favored, and the *endo*,*endo*-isomer could not be detected.

Due to the bicyclic structure the conformations of the alkene **9h** and of the adduct radicals **10h** and **11h** are not very flexible. In the first reaction step, the imidyl radical **6** or **7** can add from the *exo*- or the *endo*-side to norbornene (**9h**) forming the *exo*-adduct radicals *exo*-**10h** or *exo*-**11h**. The *exo*-attack is favored for both imidyl radicals **6** and **7**, and the *exo*-orientation of the imidyl moiety is found in 70% (**16h**) to 77% (**13h**, **14h**) of the products.

The orientation of the halogen atom is determined in the second reaction step. As in the first step, an *exo*attack competes with an *endo*-attack but now the orientation of the imidyl substituent has an influence on the product formation as well. For the halogen transfer, the *exo*-orientation is favored even more: 70% (**16h**), 78% (**14h**) and 83% (**13h**). The *syn*- or *anti*-effect of the imidyl substituent is therefore not as important as the shielding by a methylene or an ethylene bridge in the norbornane bicyclus.

We thank Prof. Dr. C. Rüchardt for his generous support of this work and J. Sommer and R. Zimmer for experimental assistance.

Experimental

General Procedure for the Radical Addition of *N*-Haloimides 1-5 to Alkenes 9: 30 mmol of the alkene 9 was dissolved in 50 mL of dichloromethane. Then 3.00 mmol of *N*-haloimide 1-5 was added. Irradiations of *N*-chloroimides (2, 4) were carried out in a quartz flask, or in a Pyrex flask after addition of an initiator (AIBN or di-*tert*-butylperoxide). *N*-Bromoimide (1, 3, 5) runs were irradiated in Pyrex flasks (see tables 5-10 for details). The mixtures were irradiated by an UV lamp (distance to the flask 1 cm). Due to the lamp heat, the reaction mixture was brought to reflux. The end of the reaction was detected by a potassium iodide-starch paper, see also ref. [4e]. Work-up procedure (see also tables):

Method A. After evaporation to dryness, the product was purified by column chromatography (SiO₂ and dichloromethane).

Method B. After evaporation to dryness, the crude product was dissolved in ca. 20 ml of dichloromethane and washed 3 times with 20 ml of sodium bicarbonate (10% in water). After drying the organic layer with magnesium sulfate, the solvent was distilled off, and the residue was recrystallized from ethanol/water (1:1).

Method C. After evaporation to dryness, the product was dissolved in ca. 20 ml of dichloromethane and was washed three times with 20 ml of 2N NaOH. The organic layer was separated and dried with $MgSO_4$. After evaporation to dryness, the residue was either recrystallized from water/ethanol (when solid) or filtered through silica gel with ethyl acetate followed by removal of the solvent.

	Irradiation time (min) (glassware, initiator)	ation Yield (%) ^a) Formula min) work-up method (molecular weight) ware, initiator)		Elemental analysis found calculated			
	(8)			%C	%H	%N	
13c	20	13	C ₁₅ H ₁₆ BrNO ₂	55.99	5.04	4.16	
	(Duran)	А	(322.20)	55.92	5.01	4.35	
13d	150	35 (NMR)	C ₁ , H ₁₀ BrNO ₂	56.88	5.26	4.15	
	(Duran)	21 (isolated) B	(336.23)	57.16	5.40	4.17	
14a ^b)	1770	35	C12H14CINO2	62.82	4.77	5.49	
,	(Duran, air, 100 mg of AIBN)	A	(251.71)	62.53	4.84	5.61	
14c	1240	39 (NMR)	C. H. CINO.	64 63	5 79	4 81	
110	(Quartz air 500 ul	B	(277.75)	64.87	5.81	5.04	
	of di- <i>tert</i> -butylperoxide)	D	(211.13)	04.07	5.01	5.04	
1 <i>4</i> d	660	46 (NMP)	C H CINO	HR-MS. for	und: 201 1016		
174	(Quartz air 100 ul of	11 (isolated)	(292.77)	111C-1015. 100	led: 291.1010	0	
	di-tart-butylperovide)	R	(2)2.11)	Ca	icu. 271.1020	0	
140		$\frac{D}{25}$ (NMR)	C H CINO	56 89	3 75	5 56	
140	(\mathbf{O}_{uartz})	21 (isolated) A	(251.67)	57.27	4.01	5.50	
1 <i>4</i> b	105	21 (ISOIALCU) A	(251.07)	65.05	5.10	5.00	
1411	(0) (0)	5 (isolated) B	(275,73)	65.34	5.19	5.00	
	$(Quartz, an, 100 \mu)$	J (Isolated) D	(275.73)	05.54	5.12	5.08	
16h	582	40	C H CINO	HD MS. for	und: 257 1181		
100	(Duran 300 ul of	40 D	(257.76)	11K-IMD. 10	Ind. 257.1181	3	
	(Duran, 500 µr 0)	D	(237.70)	Ca	icu. 237.1162	5	
164		25 (NIMD)	C H CINO	62.82	9 24	1 91	
100	(Ouerta)	23 (INIVIR) 12 (isolated) C	(285, 81)	62.09	0.54 8.40	4.04	
	(Quartz)	15 (Isolated) C	(285.81)	03.08	8.40	4.90	
16h ^c)	95	40	C14H20CINO2	HR-MS: for	ind: 269,1183		
/	(Duran, 50 µl of	E	(269.77)	ca	lcd: 269.1182	2	
	di- <i>tert</i> -butylperoxide)	_	()			_	
16i	120	75	C ₁₂ H ₂₂ ClNO ₂	60.03	8.44	5.38	
	(Duran, 100 µl of	C	(259.78)	60.11	8.54	5.39	
	di- <i>tert</i> -butylperoxide)		()				
16i	495	46	$C_{15}H_{25}CINO_{2}$	HR-MS: for	ind: 287.1653		
- •J	(Duran, 250 µl of	D	(287.83)	ca	lcd: 287.1651	9	
	di- <i>tert</i> -butylperoxide)		()				
17b	55	15 (NMR)	$C_{10}H_{12}BrNO_{2}$	59.43	4.56	3.76	
	(Duran)	A	(358.23)	60.35^{d}	4.50	3.91	
	()		(223.22)	,			
17i	115	35	C ₈ H ₁₈ BrNO ₂	59.96	5.01	3.79	
	(Duran)	А	(360.25)	60.01	5.04	3.89	
17j	60	21	$C_{20}H_{22}BrNO_2$	61.44	5.71	3.61	
J	(Duran)	А	(388.30)	61.86	5.71	3.48	
			· /	HR-MS: for	und: 387.0831		
				ca	lcd: 387.0834	0	

Table 5	Addition of N-haloimides	1-5 to alkenes	9: irradiation times,	, vields and elementa	l analyses for $13-17$
---------	--------------------------	----------------	-----------------------	-----------------------	------------------------

^{a)} Based on *N*-haloimides 1-5. ^{b)} 10 mmol of **2**, 100 mmol of cyclopentene (**9a**), 150 ml of dichloromethane. ^{c)} 25 ml of dichloromethane. ^{d)} In the ¹H NMR spectrum, no impurities >5% were found.

Table 6	Addition	of N-halophthalim	ides 1 and 2	to alkenes 9.	¹ H NMR	data of the	addition	products 1	3, 14 a	and 17	$[\delta(\text{ppm})]$
250 MH	z, CDCl ₃ ,	TMS].									

	alkyl protons (former alkene)	-CH-Im and -CHBr (former alkene)	arene protons (former imide)
13c	1.5–2.0 (m, 6H) 2.1–2.5 (m, 4H)	4.50 (dt, $J_t = 10.0$ Hz, $J_d = 3.0$ Hz, 1H) 5.98 (ddd, $J = 12.0$ Hz, $J = 8.0$ Hz,	7.72 (m _c , 2H) 7.85 (m _c , 2H)
	J = 4.0 Hz, 1H)		
13d ^a)1.5 – 2.1 (m, 9H) 2.1 – 2.6 (m, 3H)	4.70 (ddd, $J = 2.1$ Hz, $J = 8.9$ Hz, $J = 11.0$ Hz, 1H) 5.16 (ddd, $I = 2.1$ Hz, $I = 5.5$ Hz, $I = 11.0$ Hz, 1H)	$7.72 (m_c, 2H)$
		5.10 (add, J = 5.1 Hz, J = 5.5 Hz, J = 11.0 Hz, 1H)	$7.85 (m_c, 2H)$
14a	$1.9 - 2.3 \text{ (m, 5H)} 2.45 \text{ (m}_{c}, 1\text{H})$	4.73 (m _c , 2H)	7.73 (m _c , 2H)
			$7.85 (m_{e}, 2H)$
14c	1.5 – 2.4 (m, 10H)	4.37 (dt, J_d = 2.8 Hz, J_t = 10.4 Hz, 1H) 4.79 (ddd,	7.72 (m _c ,2H)
		J = 4.0 Hz, $J = 8.2$ Hz, $J = 10.1$ Hz, 1H)	7.85 (m _c , 2H)

FULL PAPER _____

A. Kirsch et al.

	alkyl protons (former alkene)	-CH-Im and -CHBr (former alkene)	arene protons (former imide)
14d	1.3 – 2.6 (m, 12H)	4.2 - 4.4 (m, 0.6H) <i>cis</i> 4.6 (ddd, $J = 10.7$ Hz, J = 8.8 Hz, $J = 2.1$ Hz, 0.7 H) <i>trans</i> 4.95 (ddd, J = 8.7 Hz, $J = 5.8$ Hz, $J = 2.9$ Hz, 0.7 H) <i>trans</i>	7.69 (m _c , 2H) 7.81 (m _c , 2H)
14e	2.23 (dddd, $J = 7.0$ Hz, $J = 5.2$ Hz, $J = 6.1$ Hz, J = 13.2 Hz, 0.55H) trans, 2.58 (dddd, $J = 3.1$ Hz, J = 8.4 Hz, $J = 7.0$ Hz, $J = 11.6$ Hz, 0.45 H) cis, 2.79 (ddt, $J_d = 10.2$ Hz, $J_d = 12.3$ Hz, $J_t = 9.1$ Hz, 0.45H) cis, 2.95 (dq, $J_q = 6.8$ Hz, $J_d = 13.6$ Hz, 0.55H) trans, 3.98 (ddd, $J = 7.0$ Hz, $J = 8.2$ Hz, $J = 8.9$ Hz, 0.45 cis, 4.16 (dt, $J_d = 8.2$ Hz, $J_t = 6.7$ Hz, 0.55 H) trans, 4.31 (ddd), $J = 6.1$ Hz, $J = 7.0$ Hz, $J = 8.2$ Hz, 0.55H) trans, 4.31 (ddd), $J = 6.1$ Hz, $J = 7.0$ Hz, $J = 8.1$ Hz, 0.45H) cis	4.62 (ddd, <i>J</i> = 8.6 Hz, <i>J</i> = 6.9 Hz, <i>J</i> = 10.2 Hz, 0.45 H) <i>cis</i> 5.01 (ddd, <i>J</i> = 5.1 Hz, <i>J</i> = 3.7 Hz, <i>J</i> = 7.1 Hz, 0.55 H) <i>trans</i> 5.98 (d, <i>J</i> = 4.0 Hz, 0.55 H) <i>trans</i> 6.17 (d, <i>J</i> = 7.0 Hz, 0.45H) <i>cis</i> H)	7.76 (m _c , 2H) 7.88 (m _c , 2H)
14h	1.2 - 1.9 (m, 4H) 1.9 - 2.2 (m, 1H) 2.2 - 2.7 (m, 2.89H) 3.0 - 3.0 (m, 0.11H)	4.11 (dd, $J = 2.4$ Hz, $J = 5.5$ Hz, 0.58H) °) 4.25 (m _c , 0.22 H) ^d) 4.61 (t, $J = 4.0$ Hz, 0.31H) °) 4.97 (m _c , 0.58H) °) 5.25 (dd, $J = 3.7$ Hz, $J = 2.1$ Hz, 0.31H) °)	7.73 (m _c , 2H) 7.87 (m _c , 2H)
17b	$\begin{array}{l} 1.4 - 1.6 \text{ (m, 2H)} \\ 1.7 - 1.9 \text{ (m, 1H)} \\ 1.9 - 2.1 \text{ (m, 3H)} \\ 2.4 - 2.6 \text{ (m, 2H)} \end{array}$	5.27 (m _c , 2H)	7.77 (dd, $J = 8.2$ Hz, J = 7.3 Hz, 2H) 8.22 (dd, $J = 1.2$ Hz, J = 8.2 Hz, 2H) 8.60 (m., 2H)
17i ^f)	1.25 (s, 9H)	4.30 (dd, <i>J</i> = 14.0 Hz, <i>J</i> = 3.0 Hz, 1H) 4.62 (dd, <i>J</i> = 11.0 Hz, <i>J</i> = 3.0 Hz, 1H) 5.02 (dd, <i>J</i> = 14.0 Hz, <i>J</i> = 11.0 Hz, 1H)	7.78 (dd, J = 9.0 Hz, J = 7.0 Hz, 2H) 8.26 (dd, J = 9.0 Hz, J = 1.0 Hz, 2H) 8.64 (dd, J = 7.0 Hz, J = 1.0 Hz, 2H)
17j ^b)	0.84 (m _c , 3H) 1.1 – 1.5 (m, 8H) 1.74 (m _c , 1H) 1.89 (m _c , 2H)	4.36 (dd, <i>J</i> = 6.0 Hz, <i>J</i> = 13.0 Hz, 1H) 4.54 (m _c , 1H) 4.75 (dd, <i>J</i> = 8.0 Hz, <i>J</i> = 13.0 Hz, 1H)	7.74 (dd, $J = 8.0$ Hz, J = 7.0 Hz, 2H) 8.21 (dd, $J = 8.0$ Hz, J = 2.0 Hz, 2H) 8.59 (dd, $J = 7.0$ Hz, J = 2.0 Hz, 2H)

^a) Only the *trans*-**13d** was isolated. ^b) The pure isolated product was the α -**17j**. In the crude ¹H NMR 33% of β -**17j** was found (δ = 4.16). ^c) *exo*-Imidyl, *exo*-Cl. ^d) *exo*-Imidyl, *endo*-Cl. ^e) *endo*-Imidyl, *exo*-Cl. ^f) Only one regioisomer was found in the ¹H NMR.

Table 7	Addition	of N-chlo	ro-3,3-dimethy	lglutarimide	(4) to alkenes	9. ¹ H NMF	data of t	he addition	products	16 [δ(p	pm),
250 MH	z, CDCl ₂ ,	TMS].	-	-					-	-	-

Nr.	alkyl protons (former alkene)	-CHIm- und -CHCl- (former alkene)	CH ₂ (former imide)	CH ₃ (former imide)
16b	1.2 – 2.3 (m, 8H)	4.66 (ddd, $J = 12.0$ Hz, $J = 11.3$ Hz, $J = 3.9$ Hz, 1H) trans, 4.80 (dt, $J_t = 11.1$ Hz, $J_d = 4.4$ Hz, 1H) trans, 5.7 – 5.8 (m, 1H) cits 59 – 6.1 (m, 1H) cits	2.50 (s, 4H)	1.10 (s, 6H)
16d	1.4 – 1.8 (m, 8H) 1.9 – 2.1 (m, 2H) 2.1 – 2.4 (m, 2H)	4.95 (dd, $J = 11.0$ Hz, $J = 5.65$ Hz, $J = 2.9$ Hz, 1 H) 5.17 (dd, $J = 10.7$ Hz, $J = 7.9$ Hz, J = 1.4 Hz, 1H)	2.51 (m _c , 4H)	1.07 (s, 3H) 1.15 (s, 3H)
16h	$1.1 - 2.7 \text{ (m, 18H)}^{a}$	$\begin{array}{l} 4.24 \ (d, J = 6.8 \ Hz, 0.3H)^{b} \\ 4.34 \ (d, J = 6.8 \ Hz, 0.3H)^{b} \\ 4.59 \ (dd, J = 2.0 \ Hz, J = 6.8 \ Hz, 0.4H)^{c} \\ 4.69 \ (dd, J = 2.0 \ Hz, J = 6.8 \ Hz, 0.4H)^{c} \\ \end{array}$	a)	a)
16i	1.11 (s, 9H)	3.80 (dd, J = 14.0 Hz, J = 3.2 Hz, 1H) 4.13 (dd, J = 10.5 Hz, J = 3.2 Hz, 1H) 4.42 (dd, J = 14.0 Hz, J = 10.5 Hz, 1H)	2.52 (s, 4H)	1.13 (s, 6H)
16j ^e)	0.88 (m _c , 3H) 1.1 – 1.8 (m, 16H)	3.77 (dd, $J = 12.3$ Hz, $J = 3.5$ Hz, 1H) α 4.2 - 4.3 (m, 2H) α 3.63 (dd, $J = 11.3$ Hz, $J = 5.3$ Hz, 1H) β 4.0 - 4.1 (m, 2H) β	2.53 (s, 4H) α+β	1.12 (s, 6H) α+β

^a) The alkyl protons of the former norbornene and the proton of the imidyl moeity overlap. ^b) *exo*-Imidyl, *endo*-Cl. - c) *exo*-Imidyl, *exo*-Cl. - d) *endo*-Imidyl, *exo*-Cl. ^e) The crude reaction mixture contained 90 % of the α -regioisomer α -**16j** and 10 % of the β -regioisomer β -**16j**.

	chromatography (SiO ₂ /CH ₂ Cl ₂), <i>R</i> _f	<i>m. p.</i> (°C)	m/z (%) (EI, 70 eV)
13c	A, 0.65	99 – 101 ^a)	321, 323 (M, 10, 10), 242 (M–Br, 42), 186 (45), 160 (34), 148 (100), 130 (37), 105
13d	В	76 (EtOH/H ₂ O)	(14), 104 (42), 95 (51), 76 (44) 335, 337 (M, 5, 5), 256 (M–Br, 21), 186 (M– $C_5H_{10}Br$, 59), 173 (M– $C_7H_{12}Br$, 13), 160 (39), 148 (100), 130 (35), 104 (26)
14a	В	133 (EtOH/H ₂ O)	(249), 251 (14, 4; M), 186 (M-C ₃ H ₄ Cl), 160 (8), 148 (100), 130 (40), 105 (10)
14c	A, 0.78	83 ^a)	277, 279 (22, 7, M), 242 (6, M–Cl), 186 (100, M–C ₄ H ₈ Cl), 173 (9, M–C ₅ H ₉ Cl), 160 (36, M–C, H ₁₀ Cl), 148 (95, M–C, H ₁₀ Cl), 130 (54), 105 (17), 104 (44)
14d	A, 0.82	55 – 58 ^a)	291, 293 (17, 6, M), 256 (6, M–Cl), 186 (75, M–C ₅ H ₁₀ Cl), 173 (23, M–C ₆ H ₁₁ Cl), 160 (35), 148 (100), 130 (37), 108 (31), 104 (29)
14e	A, 0.62 and 0.57 (isomers)	95 ^a)	215 (49, M–HCl) ^b), 187 (37, M–C ₂ H ₅ Cl), 186 (26, M–C ₂ H ₆ Cl), 148 (83, C ₄ H ₄ ClO), 130 (88), 105 (34), 104 (33), 41 (100)
14h	A, 0.7	112 ^a)	275, 277 (100, 37, M), 276 (38), 274 (36), 241 (15, M+H–Cl), 240 (15, M–Cl), 239 (13, M–HCl), 211 (47, M–C ₂ H ₅ Cl), 200 (15, M–C ₃ H ₄ Cl), 186 (23, M–C ₄ H ₆ Cl), 172 (36, M–C ₄ H ₂ Cl), 160 (41), 148 (57), 130 (25), 105 (6), 104 (28)
16b	D	vellow oil	221 (3, M–HCl), 142 (100, M–C _c H _s Cl), 114 (18, M–C ₇ H _s ClO)
16d	С	94 (EtOH/H ₂ O)	285, 287 (2, <1, M), 250 (16, M–Cl), 180 (7, M–C ₅ H ₁₀ Cl), 142 (100, M–C ₈ H ₁₂ Cl), 114 (23), 83 (57)
16h	E, 0.68	colorless oil	$287, 289 (36, 100, M+NH_4)$ °), 270, 272 (63, 20), 234 (63)
16i	C	110 – 115 (EtOH/H ₂ O)	259, 261 (11, 4, M), 203, 205 (22, 8, $M-C_4H_8$), 168 (26, $M-C_4H_8Cl$), 154 (24), 151 (34), 136 (100), 108 (32), 83 (56)
16j	D	yellow oil	287, 289 (2, 1, M), 252 (7, M–Cl), 154 (11, M–C ₇ H ₁₄), 142 (100, M–C ₈ H ₁₄ Cl), 126 (13), 83 (53)
17b	A. 0.57	177	357, 359 (8, 8, M), 198 (100), 180 (12), 152 (6)
17i	A	160 ^d)	$(100 \text{ M}-\text{C}_4\text{H}_9\text{Br}), 210 (59, \text{M}-\text{C}_5\text{H}_{10}\text{Br}), 197 (100 \text{ M}-\text{C}_4\text{H}_9\text{Br}), 210 (59, \text{M}-\text{C}_5\text{H}_{10}\text{Br}), 197 (100 \text{ M}-\text{C}_4\text{H}_9\text{Br}), 210 (59, \text{M}-\text{C}_5\text{H}_{10}\text{Br}), 197 (100 \text{ M}-\text{C}_4\text{H}_9\text{Br}), 197 (100 $
17j	A, 0.55	82	(100, 11 C ₀ , 12-1) 387, 389 (11, 11, M), 308 (44, M–Br), 210 (55), 198 (100), 197 (74), 180 (41), 152 (20)

Table 8 Addition of *N*-Haloimides 1-5 to alkenes 9. Chromatography details, melting points and MS data of the addition products 13 - 17

^a) After evaporation of the solvent. b) No mass peak in the EI spectrum, but the CI spectrum (isobutane) showed M+CH₃: 266 (100), 268 (11). ^c) CI-Spektrum (ammonia, 170 eV). ^d) Ref [8]: 126 – 127 °C.

Table 9 1	IR data of the	addition	products	13, 14	, 16 and 17
-----------	----------------	----------	----------	--------	-------------

		$v (\mathrm{cm}^{-1})$
13c	KBr	1765 (m), 1710 (s), 1395 (s), 1380 (s), 1355 (s), 730 (s)
13d	KBr	1765 (s), 1710 (vs), 1395 (s), 1385 (s), 1365 (s), 1115 (s), 730 (vs)
14a	KBr	1770 (m), 1705 (s) 1090 (m), 730 (s)
14c	KBr	1765 (m), 1705 (s), 1390 (s), 1380 (s), 725 (s)
14d	KBr	1770 (m), 1710 (s), 1380 (s), 1120 (m), 1090 (m), 725 (s).
14e	KBr	1770 (m), 1720 (s), 1375 (s), 1060 (s), 725 (s)
14h	KBr	1765 (s), 1710 (vs), 1375 (s), 1110 (s), 720 (s)
16b	film	1730 (m), 1670 (s), 1460 (m), 1400 (m), 1360 (m), 750 (m)
16d	KBr	1715 (m), 1685 (s), 1355 (s), 1275 (s), 1235 (s), 640 (m), 610 (m)
16h	film	1730 (m), 1680 (s), 1460 (m), 1420 (m), 1360 (m), 640 (m)
16i	KBr	1723 (m), 1675 (s), 1360 (m), 1145 (m), 630 (m)
16j	film	1730 (m), 1680 (s), 1360 (m), 680 (m), 630 (m)
17b	KBr	1695 (s), 1655 (s), 1340 (s), 1240 (s), 785 (s)
17i	KBr	1645 (s), 1575 (s), 1315 (s), 1225 (s), 935 (m), 765 (s)
17j	KBr	1700 (s), 1660 (s), 1650 (s), 1385 (s), 1360 (s), 1335 (s), 1240 (s), 1175 (s), 770 (vs)

Table 10 Stereoselectivity of the radical addition of *N*-Haloimides 1 - 5 to cyclic alkenes 9a - h. The selectivities were determined from the crude reaction mixtures by GC and ¹H-NMR. The retention times and the chemical shift used for the determination of the stereoselectivity are listed.

	GC or ¹ H-NMR	<i>trans</i> -product r_t	cis -product (min) or δ (ppm)	
13c	¹ H-NMR	only <i>trans</i> -product in ¹ H-NMR		
13d	GC	91	9	
		19.3 min	20.0 min	

FULL PAPER

Table 10 (continued)

	GC or ¹ H-NMR	trans-product	$r_{\rm t}$ (min) or δ (ppm)	cis-product
13g ^a)	¹ H NMR	87		13
108 /		5.74 ppm		5.55 ppm
14a	¹ H NMR	11	only trans-isomer	11
14b	¹ H NMR	97	5	3
		4.20, 4.73		5.6 - 5.8, 5.9 - 6.1
14c	¹ H NMR		only trans-isomer	
14d	¹ H NMR	74	·	26
		4.57, 4.95		4.2 - 4.4
14e	¹ H NMR	58		42
		5.98		6.17
14f	¹ H NMR	64		36
		4.98, 5.22		5.78
16b	¹ H NMR	94		6
		4.66, 4.80		5.7 – 5.8, 5.9 – 6.1
16d	¹ H NMR		only trans-isomer	
17b	GC ^b)		only one isomer	

A. Kirsch et al.

^a) Ref. 7. ^b) GC-conditions: DB 1/25 m, 5 min at 100 °C, 10 °C/min until 250 °C, 20 min at 250 °C.

Method D. See method C, but 20 ml of diethyl ether was used to dissolve the crude product.

Method E. See method A, but ethyl acetate/dichloromethane (9:1) was used for chromatography. – In some cases the material was purified twice to obtain analytically pure material (see Table 8 for details).

References

- a) K. Ziegler, A. Späth, E. Schaaf, W. Schumann, E. Winkelmann, Liebigs Ann. Chem. **1942**, *551*, 80; b) L. Horner, E. H. Winkelmann, Angew. Chem. **1959**, *71*, 349
- [2] a) J. Adam, P. A. Gosselain, P. Goldfinger, Nature (London)
 1953, 171, 704; b) P. A. Gosselain, J. Adam, P. Goldfinger, Bull. Soc. Chim. Belg. 1956, 65, 533
- [3] First publications on imidyl radicals: a) J. G. Traynham, Y. S. Lee, J. Am. Chem. Soc. **1974**, *96*, 3590; b) J. C. Day, H.
 Lindstrom, P. S. Skell, J. Am. Chem. Soc. **1974**, *96*, 5616
- [4] a) P. S. Skell, J. C. Day, Acc. Chem. Res. **1978**, *11*, 381;
 b) U. Lüning, P. S. Skell, Tetrahedron **1985**, *41*, 4289; c) P. S. Skell, U. Lüning, D. S. McBain, J. M. Tanko, J. Am. Chem. Soc. **1986**, *108*, 121; d) D. D. Tanner, C. P. Meintzer, J. Am.

Chem. Soc. **1985**, *107*, 6584; e) Y. L. Chow, D.-C. Zhao, M. Kitadani, K. S. Pillay, Y. M. A. Naguib, T.-I. Ho, J. Chem. Soc., Perkin Trans. 2, **1990**, 361; f) J. Lind, X. Shen, T. E. Eriksen, G. Merényi, L. Eberson, J. Am. Chem. Soc. **1991**, *113*, 4629; g) P. H. Kasai, J. Am. Chem. Soc. **1992**, *114*, 2875; h) J. L. Gainsforth, M. Klobukowski, D. D. Tanner, J. Am. Chem. Soc. **1997**, *119*, 3339; i) G. Merényi, J. Lind, L. Eberson, Acta Chem. Scand. **1998**, *62*, 62

- [5] a) J. C. Day, M. G. Katsaros, W. D. Kocher, A. E. Scott, P. S.
 Skell, J. Am. Chem. Soc. **1978**, *100*, 1950; b) U. Lüning, D.
 S. McBain, P. S. Skell, J. Org. Chem. **1986**, *51*, 2077
- [6] U. Lüning, A. Kirsch, Chem. Ber. 1993, 126, 1171
- [7] A. Kirsch, U. Lüning, J. prakt. Chem. **1998**, *340*, 129
- [8] J. C. Day, N. Govindaraj, D. S. McBain, P. S. Skell, J. M. Tanko, J. Org. Chem. **1986**, *51*, 4959

Address for correspondence: Prof. Dr. Ulrich Lüning Christian-Albrechts-Universität zu Kiel Institut für Organische Chemie Olshausenstr. 40 D – 24098 Kiel Fax: Internat. code (0) 431 880 1558

E-mail: luening@oc.uni-kiel.de